In the rapidly evolving field of artificial intelligence and machine learning, interpretability has become a crucial aspect. As models become increasingly complex, understanding their decision-making processes is essential for ensuring their reliability and trustworthiness. Two primary concepts in this domain are local and global interpretability. Each offers different insights into how machine learning models operate, and understanding their distinctions is vital for effectively using and improving these systems. This blog post will explore the differences between local and global interpretability, their significance, and how various educational resources can enhance your understanding of these concepts. Understanding Interpretability in Machine Learning Interpretability refers to the ability to understand and explain how machine learning models make predictions. As machine learning models become more complex, especially with deep learning approaches, their decisions can become opaque...